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LINEARIZED LIFTING-SURFACE AM) LIIYHNG-LINE EVALUATIONS OF SIDEWASH BEHIND
ROLLING TRIANGULAR WINGS AT SUPERSONIC SPEEDS 1

By PmmY J. BOBBm

SUMMARY

Tht? bijthg-wrfa~ sidewaahbehind roL?ingt?iangzdarwings
has been derivedfor a ra~e of swpemmic Mach numbem for
which the wing kw?ing edgtx remain swept behind tti Mach
cone emanati~ jrom the wing apm. Variations of the &de-
wa~h WM longitudimd dtitanze in tb vertical plume of 8ym-
metqi are presented in graphicaljorm.

An approximate expre+wionfor the&.kvmh km been &vel-
oped by mean-sof an approachusing a horwxhoe-vortexapproxi-
mate-lijtin@ine theory. By we of thti approximate qpres-
8ion, sidewash may be computed for wing8 of arbitrary plan
jorm and ~pan loadi~. A cnmpation of the 8idtnva.ehcom-
puted by lijting-eqface and lifting-line ezpremimw jor the
triun.gdar wing 8hQwed good agreementwept in the viciniiy of
the trai-!ingedge when the leading edge approached the sonic
condition.

An ilhmtrativeca.kulationhm been muck of the jorce imiuced
by the wing sidewash on a verticm!tail hated in various loT@-
tudinal ~08iti07W

INTRODUCTION

In order to make reliable estimates of the total forces and
momonts acting on an aircraft, accurate evaluations are
required of the loadings on the individual isolated compo-
nents and of the interference effects between components.
Although considerable effort has been expended in recent
years tQ supply much of this needed information for the
supersonic speed range, many important problems remain.
Among these is the induced effect of the wing flow field or,
more precisely, the wing sidewash on the vertical tail. The
only specific numerical results of this nature obtained to
dato have been for the angle+f-attack motion. In the
vertical plane of symmetry for this case, however, the side-
wmh is zero and tail surfaces located in this plane are un-
affected. This is not the situation for the rolling, yawing,
and sideslipping motions where the sidewash in the verticsl
piano of symmetry is iinite and the load induced on the
vertical tail can be appreciable. Evaluation of the sidewash
for these motions would, therefore, be important in the
prediction of the lateral stability of supersonic aircraft.

The present report presents the derivation of the sidewash
behind steady rolling, triangular wings with subsonic leading
edges. Both lifting+mrface and lifting-line methods, pre-
viously applied primarily-to determine dowmvash, are utilized

and comparisons are made of the sidewash computed by the
two methods in order to give an indication of the worth of the
more easily obtainable lifting-line results. The lifting-
surface sidewash is determined by using the doubletdisti-
bution method of reference 1, and the lifting-line values
are obtained by use of the lifting-line approach given in
reference 2.

An illustrative calculation using the derived sidewash is
made of the force induced on a halfdelta tail operating
behind a rolling triangular wing, and this force is contrasted
to the force that would act on the tail if it were rolling in
the undisturbed stream.

The material presented in this report -was submitted to
the University of ~’n-ginia as a thesis in partial MfUlment of
the requirements for the degree of Master of Science in
Aeronautical Engineering.

SYMBOLS

The positive directions of forces, moments, and velocities
are shown in figure 1.

x) ‘Y1z Cartesian coordinates of field point

% Yl,% Cartesian coordinates of doublet or line-vortex
position

u, v, w perturbation velocities along x-, y-, and z-axis,
respectively

A wing aspect ratio, b2/S
b wing span

c.
Yawing moment

yawing-moment coe5cient,
(JS!J

cl- ‘
Side force

side-force coefficient,
qs—

M!.
c.,= ~

2V p-lo

c wing root chord
d dktanee from wing bailing edge to a point

downstream
h displacement of vortex sheet below wing trailing

edge
hl, L limits of yl-integration

ISnpemdeaNAOA TeabnkdNob2-WbyPmY J.Bobbltt,IQE8.
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FIGURE l.—Triangular wing oriented with respect to body system of
axes used in analysisand associatedsymbol data.

i variable index used in SUIIUIMbtiOIISand as
subscript

k constant

~1 ~=&c)’-t?%’
eti

k,=
owl

J(z–z,)’–-z’z’

lc2,”’=-J~

M free-stream Mach number, V/Velocity of sound
in free stream

m slope of lifting line
P static pressure
AP=P,—PU

P angular velocity of roll, radians/see

!7 free-stream dynamic pressure, ~PV2

s wing area

Au,=uti-ul
v free-stream velocity
Vp sidewash induced by doublets distributed

plan form

—

over

h

x=x—xl
x*=x–z,

X,=@
~=E

c

xl,“=:
Y=y–y,
Y,=y–y,

Y,.o=$

Y“=&

Z“=$
a

P=-
r
e

sidewash induced by
wake

doublets distributed over

angle of attack, radians

circidation at any spanwise station
angle of dowmvash m&umred in xz-phumj be-

tween trailing vortex sheet and axis pmallol
to ilee-stream direction, radians

~o=p @
(

=P+ for trianguhm wings
c )

angle through which vortex sheet rotates in
moving from wing trailing edge to a point
which is d distance downstream

density of free-stream air
perturbation velocity potential

complete elliptic integral of second kind with

J
‘ J=@hmodulus k,

o ~1
complete elliptic i.&egrnl of first kind with modu-

S
b k, ‘ 6?8

“ -W
incomplete elliptic integral of second kind with

J

t
argument t and modulus k, d8

“ -w
incomplete elliptic integral of first kind with

argument tand modulus k,
J

‘~i=imds

“P

f= z—Je”?&+/3*zql-e”~)
1—f?”~

f“=
Zo-e04zo*+zo~(l -eo7

l—o”~

2—e02E’ (00) ~_Oo2a(eo)=~ –~ F’ (00)
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E=2?L
Pw(eo)

LE.
l’.E.

leading edge
trailing edge
sign denoting ilnite part of integral

Subscripts:

D
E
t!
P
9
u
w

conditions in region D (fig. 2)
conditions in region E (fig. 2)
pertaining to lower side of surface
plan form
conditions on surface of disconti&ity (at z1= O)
pertaining to upper side of surface
wake

The subscripts 1,2, 1,0, and 2,0 on the elliptic functions E
and K indicate the modulus of the elliptic function; that is,

ANALYSIS

GENERAL REMARKS

Tho problem to be considered herein is that of determining
the prwturbation sidevmsh velocity behind a rolling triangular
wing for a range of supersonic Mach numbers for which the
loading edges of the wing are subsonic. The analysis is
based on an application of linearized supersonic-flow theory
and, hence, the results obtained will be valid within the
limittitions of linear theory.

In the analysis which follows, several assumptions are
made cmmerning the trailing vortex sheet. These assump-
tions are that the vortex sheet must remain flat behind the
wing and that the rotation of the vortex sheet is small enough
to be neglected. In addition, the nonrestrictive stipulation
is made that the rolling wings be at zero angle of attack.
I?urther discussion of these points will be found in the section
entitled ‘(Results and Discussion. ”

In flight, a steady rolling motion will usually be maintained
by dMerentially deflected ailerons that create a sidewash
opposed to the wing sidewash. Calculation of aileron side-
wash, which may be of the same order of magnitude as the
wing sidewash, will not be considered in the present report.

BOUNDARY CONDITIONS

The boundary conditions for the proposed problem may
bo proscribed on the z=O plane and are similar to those given
for the angle-of-attack motion in reference 1.

The downwash boundary condition on the rolling wing is

w= @y)@

In order to analyze the quasi+teady rolling problem by use
of steady-flow theory, the rolling wing ~ considered fixed in
appro.simately the z=O plane but twisted linearly in the
spanwise direction. Only small linear twists are allowable,
howcwer, in order not to violate the assumptions of small-
pmturbation linearized theory; hence, the rate of roll is
necessarily small (approaching zero).

Pressures on the wirw and wessure difhreneas across the
wing surface are flnib” and, ” for a great variety of plan
forms, have already been obtained. (See, for example,
refs. 3 and 4.) Off the wing and in the plane of the wing,
the pressure, and hence the pressure ditlerence, must be zero.

In the 2=0 plane, the local pressure difference is directly
proportional to the streamwise component of the perturba-
tion velocity and is given simply as

AP(x,,yJ=2 Au,(x,,y,)

Q v
(1)

By consideration of the relationship between the perturba-
tion velocity potential and the stream~e velocity com-
ponent; that is,

(2)

an expr’wsion giving the jump in velocity potential across the
W-plane in terms of the local pressure difference may be
written as

(3)

Sincej from equations (1) and (2),

and since @$(zl,yI) is an odd function in z, it is clear that,
beyond the trailing edge, Ad, must be independent of x,
to satisfy the zero-pressure condition in the wake. The
integration indicated in equation (3) should, therefore, be
made from the wing leading edge to the trailing edge to
obtain Ad in the wake.

SOLUTIONTO BOUNDABY-VALUBPROBLBM

The linearized partial-diilerential equation which the per-
turbation velocity potential must satisfy in supersonic flow is

(5)

For the problem being considered herein, the solution to
equation (5) may be mitten as

This expression represents the potential in space due to a
distribution of doublets in the ~-plane with stiengths that
are governed by the potential jump across the z=O plane.

The symbol _ indicates that the fite parts of the
inilnite integrals are to be taken when they appear.
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APPIJCATIONTO TRIANGULARWINGS

The loading over a rolling delta wing with subsonic lead-
ing edgw has-been found in reference 4 to be

“(’J=FW-9
From equations (3) and (7) the potential jump
wing surface is

(7)

across the

and in the wake

A@JyJ=H@y,4_

where
2p

‘“m

The velocity potential in space may now be written
sum of the two expressions (see eq. (6))

and

‘(8)

(9)

(lo)

as the

(11)

(12)

As previously stated, the primary purpose of this report is
the determination of the velocity perturbated behind the
wing pmallel to the y-axis (or the sidewash). This flow
velocity may be obtained by taking the partial derivative of
the velocity potential with respect to y, or

With

+=4P+f$Ir

the sidewash in ‘the zz-plane from equations (11) and (12)
will be given by the sum of

?)+.()——‘p–ay g+

(13)

and

a4w

(–)‘“= ay ~

(14)

Subsequently it will be convenient for computational
purposes to derive expressions for the sidewash which have
been nondimensionalized by pb/2 so that

When ~ is written in a slightly difTerent, though equiva-
pbJ2

lent, form

fjv
pb/2V

it can be recognized that the nondimensional siclewmh
parameter may be defined as the induced angle of sidewmh
per unit wing-tip helix angle pb/2V.

The mat of this section is devoted to the evaluation of
equations (13) and (14) at points in the following two
regions of the zz-plane (see fig. 2):

(1) The region lying between the Mach lines emanuting
from the wing trailing edge and the line of intersection of
the two cones from the trailing-edge tips.

(2) The region whioh extends from the line of intersec-
tion of the two cones horn the trailing-edge tips downstream
to tity.

These two regionsare denoted, as in reference 1, by E and
D, respectively. The contributions of the doublets dis-
tributed over the plan form and the wake to the sidowash
in regions E and D are considered separately.

Sidewash due to doublets distributed on plan form in

region D.—In region D the sidewash contributed by tho
doublets distributed on the plan form is

(16)

In order to facilitate the integrations involved in deter-
mining v~,~, it is convenient to carry out the differentiation
and limiting proeemes first. This procedure gives

When the following substitutions are made,
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l?umm 2.—Regions behind a triangulartig.

which, by the use of partial fractions, may be written
mom amenable form

..

(17)

in the

(18)

The intogrtds in equation (18) may be reduced to standard
elliptic forms by use of the Jacobian transformation, s=sn u
(refa. 5 and 6), and readily integrated to give

By replacing H by its equivalent and nondimensionalizing
zI, z, and z, equation (19) becomes

where

ks2=
0“%12 C&xl,“2

(z–z,)’–p’z’=(zO–z,, “)’–0022”’

Sidewash due to doublets distributed on plan form in
region E.—The portion of the wing area over which the
integration in equation (13) is to be performed is different
for each position of the field point in region E. This fact is
evidenced by the appearance of the field-point coordinates
z, y, and z in the limits of integration. It is mpedient in
detem g z+,~ to follow the same procedure used in deter-
mining Up,~ (differentiating before integrating). This is
allowable since it can be shown that the expression for the
potential +F,B can be differentiated with respect to y without
regard to the variable limits when the evaluation of the
derivative is made at y=O.

Differentiating +P= with respect to y and then setting y
equal to zero yields “

am

d

O“%y
VP,=3ZHB r

SS

T w’ —
— fit,

~, -Mm

T“

[

o (x–x,)’–f?’z’_y,, ‘fl+

B’ 1

(21)
where

f=” –@&.&+/3’z’(1-eo2)
1—o”%

The yl-integration in the bt double integral of equation
(21) is identical to the y,-integration in equation (16); hence,
only the second term of equation (21) remains to be con-
sidered.

In the integration

let

where

This substitution results in the ~ression

&lmT (22)

which, except for the use of the finite-part co&ept, may be
integrated in a manner similar to that used for equation (17).
Performing the integration in expression (22) allows UP3
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(eq. (21)) to be written as
I

BP,E= +5E%’’(-2K’+R3’
%Y%W’*E’) ’23)

Equation (23) for vP,B does not lend itself readily to nunmrical
calculations because, at the point Xl=f, k, and k, become equal
to 1 ~and give rise to tit-order infinities in the integrnnds.
Appendix A shows how this d.ifiiculty is eliminated by a
parts integration of the terms containing the singularitim.
AEter the singularities have been txeded and the xl-,x-, and
z-lengths nondimensionalzed, equation (23) becomes

[

–(l–eoqz,,o+%

220

{J

,0 Coth-1
Vp,g I (iq, o —K1+El_ 1:& ‘Z(-2’3+E2)+J0 ~.

J

00JZJ+Z02(1 –0/)——
@/2 2?-(J(OJ k: o 6’OJZO’+ZO*(l-002)

[ ‘0(?7) 'K$:`'"O)l~'o-l` 8*:!i:i23][~''o-(E'-2?$F`*'0)l~'o-

~++eo’d ~~h-, ‘ % + E1.o t~-1 –(1–002)+%

2eoJZ#+zo’(1-eo~ eo&+zo’(1-eo2) &#+zoyl-eo2) eo~q~+zo~(l–0$) }

where

~ =%–0.4%’+2/(1–6’09
o 1—eoi

(24)

Numerical calculations may be made by using equation (24) for all values of 90except 00= 1 whereio becomos indetormkmto
and the arc hyp~bolic functions become tite. The indeterminacy when evaluated yields

Thus, an integration by parts of the singular terms of equation (23) similar to that made to obtain equation (24), using now

(fo)oo-I and =w==iom for’1 ~d L ~ ~~ch 00 h= been set equ~ to L fields

up E 220

{J J

E,–K, k&(XO-Xl,O) ~1 o+

[
:&& k2(–z’2+E2)+s;*2 (–Kl+Z)+& ;–k (–%z1,0+zo2-zo9 ~–pb/2=m xl,o 1

J [
& ~:log. (2w,, o–xo2+zo’) Kl–

1
(Er&)(zo-zI,o) ~1 o_E&=/$aG-U2–zo2

‘%.0
) lo% (2z0-@+2#)+

“J= log. (+2.9”}

The integrations in equation (25) maybe handled by numerical methods.

Sidewash due to doublets distributed in vmke in region D.—In region D, equation (14) takes the form

C?arrying out the differentiation and then the fit integration for y=O gives

By making the variable substitution

(26)

(26)

(27)
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equation (27) reduces to

(28)

The expression for %,. given by equation (28) may be
integrated (see appendix B) to yield a closed-form solution

for VW,D. The nondimensional equation for’~ is
pb/2

~D_ 2
pb12 @@ {[ ( )

;+(KZ O—G, o)F cot-l:? h, 0’ —

( )1

2242+1 K2. L42,0(2%-1)20K%oE cot-l;) k~,; —–
GW L@#+l) }

(29)

Sidewash due to doublets distributed in wake of region
E,—In region E the derivation of the sidewash is similar to
that of region D and yields

Zlw,E=2(ti-1)

{[
z K1,c80&~

p~ 7reoQ(eo) # X0-l +

((.K,,O-.E,,JF cot-l*, k,,J)–

( h O k,,~KI,O.E cot-l---J
)1

(2Z0’+1)00

- (zo–!)–2=1’Oa }

where
~Lo2=(x–c)’–@#

80%+

Sidewash at z-axis.-In the zy-plane

(30)

(@me of the wake),
only the doublets distributed in the wake contribute to the

sidmvash. Equation (2o) for ~ and equations (w) ~d (25)

VpB
for - approach zero as % approaches zero, whereas equa-pb/2
tions(29) and (30) give

(31)

This result is identical with that which would be obtained
by use of the formula obtained in referenca 7 by considering
the properties of vortex sheets. This formula, for V=yl=O, is

()--&(z, 0, 0+)=-$ ‘+,1=0 (32)

T
where

I’=(A#,~ (33)

Sidewash at z= co (Trefftz plane) .—As x approaches
infinity, the contribution of the doublets distributed on the
plan form to the sidewash goes to zero and the total side-
wash is given by

&)z+m=L*)&.=&(j=2-2zo’34’
Equation (34) cotid also have been determined more di-
rectly by using the formula

(z-)0 z
[s

2J *B MIkrEYJ4A
b/2 ...=;~ W2 ~ -bfi @J-?J~2+Z2 1

(35)

which may be obtained from equation (26) by performing
the first integration and then setting z equal to iu.flnity.

LIPTING-LINE SIDEWMH

The lifting-surfacemethod by which the sidewash behind
a rolling delta wing was derived in the previous section is
applicable to wings of arbitrary plan form; however, the
integrations which would be required before the potential
or one of the perturbation velocities could be obtained in a
calculable form are extremely difiicult to evaluate. It is of
importmme, therefore, to develop some approximate ex-
pressions which may be easily evaluated either analytically
or numeikally. References 2 and 8 indicate that a lifting
line and a lifting line approximated by supersonic horseshoe
vortices can be used as good approximations to lifting-
stiace solutions for most dowmvash problems. It would
seem that a comparison of the sidewaah behind the rolling
delta wing calculated by the lifting-surface method tiih that
calculated by an approximate method might give some
indication of the usefdness of the ‘[approximate” approach
for sidewash problems.

Referenca 2 and 8 together represent a fairly thorough
study of the lifting-line and approximate lifting-line methods,
especially with regard to downwash calculations, and show
that the swept lifting lines will probably give the best
results for swept and triangular wings. The potential due
to a yawed lifting line may be obtained from the errata of
reference 2 as

where the equation of the lifting line is

and the circulation I’ is defined by equation (33) as the
potential jump across the surface evaluated at the trailing

edge. (See fig. 3.) VVhm ~yl‘~ is zero, equation (36)

becomes

~=; tin-l z-@—/3~@’+z~ 4
23 yl (37)

Yx–———
mm h,
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potential in space (at a point x, V, z) of a finite yawed vortex of constant strength.

A numb; of finite yawed vortic~ distributed along a line can be used to approximate the potential in space of a lifting
line with any prescribed lift distribution.

From equation (37), the sidewazh due to a yawed vortex is readily obtained by taking the derivative with respect to y.
The following result is obtained:

{~ c
“; (2x’-@Y+9’z’)-zx(x’-&)’)

}

h

a+ r
‘=3j=G p–p ~y+z’(XwPY’-f7%’)] ,,‘+2’) [(YX.+-E

(38)

When m approaches inii.nity, equation (38) becomes the sidewwsh for a rectanguhm horseshoe vortex and agrees with the
equations given in references 9 and 10.

Since the loading on a rolling wing is antisymmetrical, the induced sidewash from each panel is in the same direction
and equal in the y=O plane. For this reazon it is neceswwy to calculate the sidewash only from one panel and double it.

Equation (38) can be utilized to formulate an approximate expression for the sidewash due to a series of constant-strength
yawed horseshoe vortices spaced along a line so as to represent as closely as possible the span load distribution due to rolling.
This expression is

~=_~ r@f+J—r@f.J ‘
~ (2x,’-p’Y,’-fz’)’zx,(x,xp’-p’z’)

(39)
4T

[( ‘)

z’ Y, ‘+zyjy:+y-,+yz’)i-o .@,~—&Yi’-f?’z’ Yfxr~y
1

‘f+k, the subscript i takes on all integral values from O to n. Equation (39) in non-where Yt=y—yi, Xi=z—xi, tmd %=7

dimensionalform is

[
ZQkdr@’-J][* (2x,’-pY,,,’–&z)’) –ZX,(XH3’ZO’)]

v 5 p(b/2)’ p@/2)’
vl)/2=— {.0

[(
‘—/9’Yi.oq%o~ yi,Ji_z2 Yf. o–—’+2.’ (Z’-p’Y,,o’-/9’209]

mm.

(40)

In the application of equation (40) to the calculation of sidewash, some care should be exercized that the forecone from
the field point under consideration does not intersect the lifting line at a point close to the corner of a yawed horseshoe vortox.
VJhen the forecone intersects the lifting line near a corner located within the forecone, the expression under the radical in
the denominator of equation (4o) becomes small and the sidewash becomes large. (See sketch 1.) A zero value for the
square root and an i.niinite value for the sidewash result when the forecone intersects the corner. The ~bruptnew of tho
tity varies with the distance of the field point horn the corner. Note that when x= ~, the infinity no longer exists.
The preferable field-point locations have forecones intersecting the lifting line az shown in sketch 2. The closeness of the

\

L\ ‘\... \\
‘.

--., :>,

%twse&l affc#x=ffcnl
fik!d *IS with vortexSiWet

/

.+ifting rrne

/

\

/

Sketah 1 Sketoh 2
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),0)
Y,YI

‘.,
....

‘y, =h,

/-) (

----YI‘ %

Fmum 3,—l?hke yawed vortex usedto approtite asweptlifting line.

forecone to the corner when the corner is outside the Mach
cone is obviously of no consequence because only line
vortices within the forecone from the field point contribute
to the sidewmh at the point.

RESULTS AND DISCUSSION
EXACTSIDEWM3H

The exactlinearizednondimensionalsidewwh has been cal-

culatedforvaluesofL900f1.00,0.75, 0.50,0.40, and 0.30; valuea
of h from 1.2 to 2.4; and values of ZOfrom O to 0.6 except
where these values are ahead of region E. Variations of the

sidewash parameter
U/v— with G for 7 values of G from O to

pb/2V
0.6 and for the 00’s given are presented in figure 4. Cross
plots of figure 4 which show the variation of the sidewash
pmmmter with % for 7 valuea of% from 1.2 to 2.4 are given
as figure 5.

In order to depict the effect of Mach number and leading-
cdge sweep, variations of the sidew~h p~eter with %
for values of 00of 1.00,0.75,0.50, and 0.30 have been plotted
for three longitudinal locations: ~=1.6, h=2.0, and %= ~
(fig. 6). (It should be noted at this point that an increase
in 00may be interpreted as either an increase in Mach num-
ber for n fixed lending-edge slope or an increase in the wing
semiapex angle for a specitic Mach number.) The major
difference to be noted in the effects of changing 00 is that,
when the longitudinal station is ahead of” the line of inter-
section of the Mach cones from the trailing-edge tips, an
increase in O.causes an increase in the sidewaeh at the higher
values of ~, whereas the sidewash at a station remaining
behind the intersection line during an increwe in 00 experi-
ences a decrease in sidewash at all values of % which are un-
affected by the localized infinity at the intersection line.
By way of illustration it can be seen at station a= 1.6 that

.5 Z()

o

.4
\ .1

—
~

.3 — -.2 -—
~

I .3 ‘—
—

.2

.1

[b)
0
1.2 1.4 1.6 1.8 20 22 24

*O

(a) 00=1.00.

(b) 0,-0.75.

Fmmm 4.-Longitudinal variation of nondimenaiomdsidemsh pamm-
v/v

eter —in a%plane behind triangularwingfor a numberof values
pbj2V

of % and (?o.

when 80is increased from 0.75 to 1.00 the sidewwih increases
for values of ZOgreatar than 0.2; for values of d, of 0.3 and
0.5, when ZO=l.6 is behind the intersection line, the effect
of increasing 90 is to decrease the sidewash at all values of
~ except at ~=0.6. This point is affected by the inil.nity at
the intersection line.

APPROXIMATESIDJ3WASH

From the nature of the analyticaland numericalintegra-

tionsrequiredto obtain the exact sidewash for triangtiar

wings, it is apparent that for wings with more complex

potential-jumpexpressionsthe derivationof exactsidew&h

would be a di.tliculttask. Herein lies the merit of the ap-
proximate lifting-line method (eq. (40)) which is not en-
cumbered by the complexi@ of the wing-loading expression.
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The approximate method is, however, hindered to the etient
that an area distribution of loading is assumed concentmdwl
on one or several lines. The penalty that this assumption
imposes on the quality of the results cannot be ascertained
in every case. For the trianguk -wing treated herein, com-
pmisons may be made behveen the rwmlts from the lifting-
line and the lifting-surface methods, and perhaps some indi-
cation may be obtained as to the regions wherein the approx-
imate method may or may not give reliable values.

By use of equation (4o), approximate lifting-line calcula-
tions of the sidewash have been made for O.=l.OO and 0.40,
values of q from 1.2 to 2.4, and values of % km 0.1 to 0.6.
Sidewash values for %=0 were obtained from equation (32).
A compru-ison of the sidewash calculated by the lifting-line
and lifting-surface methods has been made in figure 7, and
the agreement is shown to be good everywhere except at the
high values of % close behind the trailing edge for O.=l.OO.
The agreement in this region is considerably better at
0.=0.40 (fig. 7(b)) and indicates that as 00 is decreased
horn 1.00 the approximate calculations will become more
reliable at locations cIose behind the trailing edge.

Seventeen yawed horseshoe vortices were used to approxi-
mate the lifting line, with the concentration of vortice9
greater near the tip because of the rapid change in the span
Ionding in this region. The lifting line used in the ap-
proximate calculations consisted of a pair of straight lines
connecting the midpoint of the root chord to the tips.
Additional computations of the sidewash have been made
using lifting lines composed of straight lines connecting the
tips with the c/4 point and connecting the tips with the 3c/4
point but the agreement with the exact sidewash was not so
good as that evidenced in fiagme ?.

It is of interest that the spanwise canter of loading of the
loading distributed along the lifting line connecting the c/2
point with the tips (the lifting line yielding the best aggee-
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(a) 130=1.00.
(b) 0,=0.40.

FIGURE7.—Compariaonof lifting-line and Iifting-surfaoesldmvashfor
130=1.00 and 0.40. Ciroles represent points oaloulated by lifting-
line method.

ment with tie lifting-surface results) was located longitudi-
nally closer to the actual wing center of loading at 3c/4than
it was when the loading was dietibuted on the other two
lifting line%

The wing loading in the examples just discussed was dis-
tributed on one lifting line. Sidewaah obtained by distril.mt-
ing the wing loading on more than one lifting line would
probably show better agreement with the exact results in
region E, because some effect of the longitudinal distribution
of loading over the wing could then be realized.

EXAMPLEOF FLOW-FIELDEFFECTON VERTICALTAIL

The eftectof the induced sidewash velocitybehiud n

rollingwing on the forcesand moments contributedby a

verticaltailcan best be illustratedby analyzinga specific

wing-tail configuration.The pertinent geometric chm-

acteristicsof the wing-tailmodel are (seefig.8):
.
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\Vbgmwot ratio.. ---: ---------------------------------- 3.2
Tailm~otmtio ----------------------------------------- 1.s66
Tail mea

lVjnRnrw ----------------------------------------------- 0“21
T;il span

Wing semispnn ------------------------- -----------------
0.7

Tail ohord

lVingohord --------------------------------------------- 0“6
Gntor+f-@tity lomtion --------------------------------- 0.5c

Afree-streamMach numberofl.6@= 1.25) hasbeen chosen.
Thcwingleadingedge forthisMachnumber issonic(d,=l)
and tho vertical-tail leading edge is supersonic. Induced
side-force rmd yawing moments fora nwnber oflongitudinal
positions of the vertical tail have been determined by
numerical integrations in a manner similar to that used in
referemx 11 to obtain the contribution of horizontal tails
with supersonic leading edges to the lift and pitching moment.
In making the numerical integrations, sidevmeh curves (figs.
4 and 5) were used which had the infinity at the tip-cone
intersection line faired through. Isolated vertical-tail forces
and moments have been computed from the formulas given
in reference 12.

Figure 9 shows in stability-derivative form the variation
of the induced, isolated, and total forces and moments with
the longitudinal location of the vertical tail. For the
example configuration chosen, the induced forces and
moments are greater than the “isolated” forces and give rise
to m positive C?=rcoefficient and a negative C%. Obviously,

from the sidewrtsh curves, if the vertical tail were moved
away from the x-axis, the induced force would be reduced.
The isolated forces and moments, on the other hand, wotid
increase and the total CYP and total C% would become

negative and positive, respectively.

ASSUMPTIONSAND LIMITATIONS

In some eases, the assumptions made in the analysis, by
necessity or for convenience, to allow the determination of
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on a vertiwd tail.
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the sidewash behind triangular wings by linearized super-
sonic ‘flow theory limit the applimtion of the results. Some
discussion of these assumptions and limitations may be
useful.

The validity of the assumption of a flat vortex sheet for
wings with very low aspect ratios is questionable, but, in
the absence of experimental and theoretical information
directly concerned with the vortex sheet behind rolling
wings, no definite statement m be made as to the effects
that wing aspect ratio, roll velocity, and distance behind
the trailing edge will have on the rolling-up of the vortex
sheet. It may be possible, as suggested in reference 13, to
get some indication of these effects from the data published
in references 14 and 15 concerning the rolling-up of the vortex
sheet behind wings at an angle of attack.

The vorta sheet has been assumed not to rotate. The
angle (in degrees) through which the vortex sheet would
rotate in moving from the wing trailing edge to a point d
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distance downstream is given by

~–~: P:

Substitution into this formda of values of pb/2V usually
encountered and of distance d up to two semispans will
generally yield rotation angles small enough to be neglected.

The sidewnsh expressions derived in the analysis for rolling
wings at zero angle of attack are also applicable for iinite
angles of attack because angle+f-attack loadings are sym-
metrical and do not contribute to the sidewash in the zz-
plane. The displacement of the assumed flat vortex sheet
from its zero angle-of-attack position, however, must be
accounted for; that is, the sidewash given for a point z, Z=O+
for the zero angle+f-att.acli case represents the sidewash at
the vortex sheet when the fig is at an angle of attack. At
a distanm d behind the trailing edge, the displacement of
the vortex sheet below the trailing edge may be found

. (see sketch 3) &m

s
h= d tan edx

T.E.

,<Wmg
/’

,’
a--~ _,~ d

I
/’ --- , h

,’
Truikng edge”

Vlxtex4?eet-’ - ~-~

Wmg chord extemded”

Sketch 3

Values of tan c for a triangular wing are given in reference 2.

CONCLUDING REMARKS

The variation of sidewaah with longitudinal distance in
the vertical plane of symmetry behind rolling triangular
wings traveling at supersonic speeds has been derivecl by
linearized lifting%urface and lifting-line methods. Tho
range of supersonic Mach numbem for which tlm lifting-
surface results are valid is limited by the condition that tlm
wing leading edges must be subsonic. The variations of
lifting-surface sidewash are presented in graphicrd form for
a number of values of 8., a Mach numbefileading-eclge-
sweep parameter. Sidewash calculated from the lifting-line
formula has been compared with the lifting-surface siclewash
for values of 00 of 0.40 and 1.00. This comparison shows
very good agreement of the lifting-line results with lifting-
snrface results except at the higher vertical distances C1OSO
behind the trailing edge for O.= 1.00. The curves for
0.=0.40 reveal that, as L90is decreased from 1.00, the agree-
ment close behind the trailing edge improves.

An illustrative calculation of the sidewash-induced force
on a halfdelta vertical tail operating behind a triruqgular
wing indicates that the induced force acts in opposition and
is comparable in magnitude to the damping force created
on the isolated rolling tail. In order to determine the total
force which would act on the vertical tail of a steady-rolling
aircraft in flight, an additional force induced by the aileron
sidewash should be calculated. This force may be of the
same order of magnitude as, and opposed to, the forco
induced on the tail by the wing sidewash. No attempt has
been made in the present report to evaluate aileron sidewash.

LANGLEY AERONAUTICALLABORATORY,
NATIONAL ADmSORY COW~EE FORhRONAUTICS,

LANGLEY I?IELD, VA., October ,%1,1966.
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APPENDIX A

TREATMENT OF SINGULARITTIM IN UP,EAS GIVEN BY EQUATION (20)

In order to isolate the %fmite” terms, equation (23) may
be written as

Terms @ and @) are htegrable by numerical methods,
whereas terms @ and @ contain a first-order iniinity at the
limit z,=j (when z,=~, kl=k,= 1).

Consider term @in equation (Al)

J

J(fxI k2ES.—
o O@l1—kl~

If & is replaced by its equivalent (see symbols), term @
becomes

J

f
Assume expression (A2) to be of the form w do, where

o

u= E2&-31)2-p~z2
and

d~=(z–z,)’–%:z’–eo%?
Then,

1 –(1–e,qz,+z
coth-l

‘=JOO%?+P22’(1 –002) Jeo%?+pzzl(l-eoq

and a partsintegrationof expression(A2) giws

(A3)

Substituting for kl its equivalent in term @ of equation
(Al) rezults in

(A4)

With
U= OPIE1

and

dv= –(-JXI
f+)%= (Z–z,)’+pz’

a parts integration of expression (A4) yields

(A5)

The nonintegral tam in expression (A5) may be written in
slightly diflerent form as

EJ(Z–X,)2+32Z’ ~fi_, – (l–eoqzl+z

k1~oo%#+B2z’(1-oo2) -Jeo%&+fP&(l-ooq
(A6)

Inazmuch as when z,=f, k,=k~= 1, it is clearthat theevaluationof the integratedtarm in expression(A5) (equivalent
to expression (A6)) at the limit zl=j will cancel the integratedterm of expression(A3) evaluated at this same limit.
The complete e.spression for vP,~ is now seen to be

%- X2-+22 x
coth-l +

I&ELo [–(l–oo~c+z]
24eo’d+f?’z2(l-eoq Jeo%Y+@z’(l –e”~ @o%Y+@z~(l—eo2) ‘d-’ Je&?+/9’z’(1-oo2) }

(A7)

This equation in nondimensional form is presented in the analysis of the report as equation (24).

4691w~i
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APPENDIX B

EVALUATION OF uw,~

The contribution of the doublets distributed in the walre to the sidewash in region D is given by equation (28) as

@l)

which by use of partial fractions can also be written

For ease in writing, ~ has been replaced by a in equation (B2). Consider tit the integral

If the variable

The evaluation

where

J

1 ~ds

‘ (1+(z*8’)J~@

transformation .s=sin o is made. expression (333) becomes

J

XJ’ COS* e de

‘ (l+(z’Si1120)41 –’2,$ Sti’6

of.expression(EM) isgiven by formula (9),table61 ofreference16 as

J

1 Ji=i7ds
= (3(k%0,a)

o (l+a’@ ~~i”a A-

[
Q(kzo,a)= ~(.K~,O-EzW(cot-’ a,kzO’)-K2,Wcot-1 a,k2.o’)

1

@3)

&14)

(I36)

(B6)

Expression @4) could also have been integrated without recoume to
136). The integration of expresion (B3)

J

1 ~2 (is

o (1+a28’)2JFEjZ7

tables with the aid of refarence 17 (pp. 134 to

may be performed by using the relationship (seep. 13 of ref. 17 and p. 79 of ref. 18):

From equations @5) and (B6), equation (137) becomes

@7)

(B8)

Clmrying out the differentiation in equation (138) results in

[

a@Ti 1

1
Q(kzo,a)+@(k2,0,a)–; (a~+kzo’)sl’ ‘ a~(a*+l)(a’+k,,02)

i,=’[-=’om , ~ ] (w

KZ,o~EZ,O
(a’+l)(a’+kzo?
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(eq. (132)) k

This integration may be reduced to standard elliptic forms by the transformation s=sn u and integrated to give

473

(I31O)

Tho sidewash Ore,. is now completely defied by equations (B2), (135), (139)j and (B1O) as

Considerable simplification of equation (J311) may be accomplished by combining terms and noting that

a,+k, ,2=(z–c)%, o’=(z–c)’kz o’s’
/yz9 eow

and

Replacing a by its nondimensional equivalent

and H by its equivalentand then nondimensionalizingx by c and w, D by pb/2 gives

Equation (1313) is identical with equation (29) of the analysis,

()
function (7 kj, o, ~ has been written out.
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